

1. Precious Baltic Sea

Well-established fact:

People in the Baltic Sea countries value the clean Sea

- Willingness to pay
 - Willingness to act
 - Willingness to cooperate
- Cost-efficiency: how to act and cooperate wisely

2. Multiple meanings of cost-efficiency

Meaning 1. Minimize joint costs to achieve a given nutrient reduction target

== maximize nutrient reduction subject to a given budget

Meaning 2. Something is cheap...

Meaning 3. Choose those measures that provide the highest ratios of reduction/cost

3. Baltic Sea Action Plan revised

	Nitrogen re	eduction	Phosphorus reduction		
	tons %		tons	%	
BSAP 2013	87 710	0,11	14 288	0,37	
BSAP 2007	128 390	0,16	13 356	0,34	
Difference	- 40 680	- 0,05	+ 932	+ 0,03	

Emphasis on agricultural loads persists:

"WE ACKNOWLEDGE that sustainability of agricultural production is a key to the success of reaching input reductions for Good Environmental Status, RECALLING that agriculture substantially contributes to the nutrient inputs to the Baltic Sea"

Question: Is it really?

4. Two good news

Nutrient abatement in WWTP.s is cheap

- Holds for both N and P abatement
- This especially good news for Russia, Poland and the Baltic States, as they still have a large potential to reduce loads from point sources
- Minor problem: Nitrogen abatement requires longlasting initial investment, that is, monetary funds

• New efficient measures for agriculture available

- Phosphorus loads can be reduced quite a lot
- Good news for Finland, because phosphorus reduction potential from point sources is small

5. Costs in agriculture and WWTPs

Marginal abatement costs (Short-term and current means for agriculture)

Nitrogen (kg)

Agriculture: 20%: € 9,4 WWTPs: 90%: € 11,7

Phosphorus (kg)

Agriculture: 20%: €229 WWTP.s: 95%: €17

6. WWTPs important for cost-efficiency

Allocation of reduction			Abatement costs (M€)			
ww	WTPs agriculture		WWTPs	agriculture	total	
N	Р	N	Р	М€	М€	М€
47 000	6 200	83 000	7 200	404	10 952	11 356
87 000	10 600	42 800	2 800	814	717	1 531

Green alternative: Urban Waste Water Directive for WWTPs and the rest to agriculture (and other nonpoint sources)

Red alternative: Cost-efficiently WWTP.s reduce 90% of N and 95% of P and the rest to agriculture (and other nonpoint sources)

Green alternative: costs huge 11.4 billion euros annually

Red alternative: cost 1,5 billion euros, 13.5% of green alternative

7. Reducing P in agriculture: clay soils

Gypsum reduces

- Dissolved P loads by 29%
- Particulate P loads by 57%
- Reduction is immediate and persists over many years

Other impacts

- No yield losses
- Improves soil structure
- Reduces erosion (2 t/yr)
- Reduces herbicide runoff
- Creates sulphates; not a problem in seas

8. The promise of gypsum

Reduction of phosphorus loads when gypsum is applied (hectare)					
P runoff	Load (gr)	Reduction (gr)	Load remaining (gr)		
DRP	400	116	284		
PP	900	513	387		
Total P	1 300	629	671		

Reduction of total phosphorus is huge: 48,4%

How about costs?

Assuming the impacts prevail at least five years

unit cost of reduction is 66 €/kg

9. Reduction potential for Finland

Archipelago Sea & Gulf of Finland

Reduction potential is
150 - 230 tons

Total costs: 55 million euro

- 25% of annual agrienvironmental payments
- costs 11 M€ annually

Society can afford this sum for agriculture

10. Recommendations

Two stage approach for the Baltic Sea policies

- **1. Reduce** nutrient loads from WWTP.s at once
- **2. Facilitate** long-term adjustment of agriculture
 - Reduce of high soil P content
 - Allocate production to best fields parcels
 - Design new features of nutrientsmart agriculture

A large scale use of gypsum in Finland

Research on the applicability of gypsum in other states in the Baltic Sea region

11. Baltic Sea Action Plan

	Nitrogen			Phosphorus			
	load	reduction	%	load	reduction	%	
Denmark	44 000	2 890	0,07	1 100	38	0,03	
Estonia	56 000	1 800	0,03	1 600	320	0,20	
Finland	49 000	2 430	0,05	1 700	330	0,19	
Germany	46 000	7 170	0,16	500	110	0,22	
Latvia	44 000	1 670	0,04	3 000	220	0,07	
Lithuania	93 000	8 970	0,10	3 500	1 470	0,42	
Poland	318 000	43 160	0,14	22 000	7 480	0,34	
Russia	83 000	10 380	0,13	4 000	3 790	0,95	
Sweden	74 000	9 240	0,12	1 600	530	0,33	
Total	807 000	87 710	0,11	38 900	14 288	0,37	